
￼ 	

Workshop	

Spatial SQL	

Instructor: John Reiser	

October 16, 2024 	

A hands-on workshop on using spatial data in database management systems, focusing on PostgreSQL.

Author: John Reiser jreiser@njgeo.org

Links to other resources, the workshop data, and updates to any of the workshop materials will be available at
https://learnspatialsql.com/

Downloading a digital version of this workbook from the website above is strongly recommended.

Install PostgreSQL
Install PostGIS extension
Install and configure a SQL Client
Install a Desktop GIS
Load workshop data into your database

PostgreSQL is an open-source, ACID-compliant, transactional relational database management system
(RDBMS) that is available on Windows, MacOS, and Linux.

As of September 2024, the current stable release of PostgreSQL is 16. While version 16 is preferred, you can use
PostgreSQL 13 or greater to complete this workshop. PostgreSQL 15 is the latest version that is supported
by ArcGIS Pro and ArcGIS 11.3. View ESRI's documentation on PostgreSQL requirements for more
information.

You should not use a PostgreSQL version that is end-of-life (EOL) even if it is supported by ArcGIS. It will
no longer receive security updates. Check the PostgreSQL versioning policy to see upcoming EOL dates.

Downloading PostgreSQL: https://www.postgresql.org/download/

Spatial SQL

Getting Started

Online Resources

Pre-requisites

Installing PostgreSQL

1

mailto:jreiser@njgeo.org
https://learnspatialsql.com/
https://enterprise.arcgis.com/en/system-requirements/latest/windows/database-requirements-postgresql.htm
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/download/

If you are using Windows, you will likely be directed to the EnterpriseDB installer for PostgreSQL. ESRI users
through their ArcGIS downloads are also directed to the EnterpriseDB installer. Install the latest version of the
PostgreSQL database - or the latest version compatible with ArcGIS, if that is important to you. As of
September 2024, you should be installing a version of PostgreSQL 13 or later. The EnterpriseDB installer will
also provide a Stack Builder application which will allow you to install PostGIS within your instance. More
information on installing PostgreSQL on Windows is available on the Workshop web site.

If you are using macOS and would like a simple installer, you should instead use Postgres.app
http://postgresapp.com/. This installer will include PostGIS. Using Postgres.app in a production environment
is strongly discouraged.

When installing PostgreSQL (either the official distribution or the Postgres.app application on macOS) you will
be prompted to set the password for the "postgres" user. For the purpose of this workshop, you can continue to
use the "postgres" user, as it is a "superuser" account and will not be limited with what you are able to do to the
database. Do not forget your password for the "postgres" account.

Some distributions of the PostgreSQL database, such as Postgres.app, may be configured to allow any user to
connect without a password, provided they are logging into the database locally and not over a network
connection. In this case, you will not need to specify a password when logging in.

Operating as the "postgres" or any other superuser in a production database without fully
understanding what you are doing is very dangerous. As you hopefully move to adopt PostgreSQL in
your organization, you should consult with a database administrator to determine the proper configuration of
users, roles, and permissions.

PostGIS is an extension to the PostgreSQL database that enables the storage, modification, and analysis of
geographic data.

If you are using the EnterpriseDB installer on Windows, you must select PostGIS from the Stack Builder. More
details are available on the Workshop web site.

If you are using Postgres.app on macOS, you do not need to install PostGIS. It is already installed.

Downloading PostGIS: http://postgis.net/install/

Usernames and Passwords

Installing PostGIS

Install and configure a SQL GUI

2

https://www.learnspatialsql.com/getting-started/
http://postgresapp.com/
https://www.learnspatialsql.com/getting-started/
http://postgis.net/install/

If you are new to working with SQL and databases, a graphical user interface (GUI) can be very helpful. There
are a variety of SQL GUIs and integrated development environments (IDEs) that you can use to work with a
PostgreSQL database.

pgAdmin https://www.pgadmin.org/
DBeaver Community Edition https://dbeaver.io/download/
PSequel http://www.psequel.com/
and many more...

For this workshop, we will be using the pgAdmin GUI. pgAdmin was designed with PostgreSQL in mind. Unlike
some of the other user interfaces, the terms used in the GUI will be Postgres-specific. pgAdmin can also be
deployed as a single user, desktop client or as a web application, allowing multiple users access to a database.

We will be using the latest version of pgAdmin 4, which as of this writing is pgAdmin 4 v8. You can get
pgAdmin from their download page: https://www.pgadmin.org/download/

3

https://www.pgadmin.org/
https://dbeaver.io/download/
http://www.psequel.com/
https://www.pgadmin.org/download/

To get you started with the workshop, we will be using data from the Natural Earth dataset. The tables used in
the workshop examples have already been exported to a PostgreSQL "data dump" file. This is a custom format
that can be used to quickly import data into a PostgreSQL database, preserving many data objects, attributes,
and permissions.

You can download the Workshop Data File from the LearnSpatialSQL download page:
https://www.learnspatialsql.com/downloads/.

Once you have downloaded the file, you can use pgAdmin to import the data into a new database for you. The
data dump file contains an entire database snapshot, so when using the import capability of pgAdmin, make
sure you also select

☑

 Include CREATE DATABASE statement that will create the workshop
database for you.

The LearnSpatialSQL download page also contains a version of the workshop data in a plain-text SQL file that
can be loaded to a database using psql or SQLite. A pre-configured SQLite version of the workshop materials
are also available.

If you do not have access to a desktop GIS, QGIS is an excellent open-source desktop GIS. You will be able to
work with PostgreSQL tables and read and manipulate PostGIS spatial columns.

QGIS is available at http://qgis.org/

If you have ArcGIS Pro or ArcGIS for Desktop, you can connect to PostgreSQL databases. The necessary
libraries are included with ArcGIS Pro and in ArcGIS for Desktop starting at version 10.4.

An alternative to installing PostgreSQL on your own machine is that you can use a pre-configured instance of
PostgreSQL and supporting applications on Amazon Web Services.

Note: using Amazon Web Services will require creating an account with AWS and using a credit card to cover
the charges incurred. The estimated cost of running an AWS EC2 (virtual server) instance for 4 hours is likely
to be less than 1 dollar. However, even when the server is off, you may be charged for the storage. Nonetheless,

Installing the Workshop Data

Install Desktop GIS

QGIS

ArcGIS Pro / ArcGIS for Desktop

Using Amazon Web Services

4

http://www.naturalearthdata.com/
https://www.learnspatialsql.com/downloads/
https://www.learnspatialsql.com/downloads/
http://qgis.org/

this is an easy way for you to get started with PostgreSQL (and cloud computing) if you do not have the ability
or desire to install the software on your personal computer.

For more information on the AWS-hosted learning environment, please see
https://learnspatialsql.com/cloud/.

GIS data that you have used in the past has likely fallen into one of two categories:

Local GIS data, where you must download and maintain it, but are free to alter it as you see fit.
Web-based GIS services, where you can easily use it through the Internet, however, you typically do not
have the ability to make changes to the data and how it is presented.

Connecting to a database is similar to a GIS service (e.g. ArcGIS Services, WMS, WFS, etc.), but with a few
distinctions:

While a database is often hosted on a different computer than the one you are using, it is likely on the
same physical network.
A client-server relationship, however the client and server are more tightly integrated.
Tighter integration is due to the greater functionality provided to clients.

You will be connecting to a database server hosted on your same computer. You can use the special network
name of "localhost" to refer to your own computer when connecting to the database.

Think of a relational database handling data this way:

A record is a single item that is composed of a list of properties. For instance, a record for a US State
would contain the state's name, population information, date of admission to the Union, and a
representation of its shape. Each of these properties would be stored in a column.
A table is a set of records that have the same list of columns. A definition of the table's list of columns is
called a table schema. You will define a table schema when you run a CREATE TABLE function to
make a new table. When you run CREATE TABLE AS SELECT... the database infers the table
schema from the set of records returned.
In PostgreSQL, a group of tables that have a need for a logical grouping are placed together in a schema.
A schema helps keep tables, views, types and functions organized within a database. SQLite does not
support PostgreSQL-style schemas, as it is a single-user database.
A database is a set of schemas and tables. Data can be easily passed between tables in different schema.

Introduction to Spatial SQL

Database Object Hierarchy

5

https://learnspatialsql.com/cloud/
https://www.postgresql.org/docs/current/ddl-schemas.html

Data cannot be easily transferred between databases without making one or more connections to the
databases participating in the data transfer.

In PostgreSQL, you can use the pg_dump and pg_restore tools to export and import data from databases. You
can also use the powerful Foreign Data Wrappers to connect to other databases or non-Postgres sources of
data, such as Oracle, CSV files, or even web services.

In this workshop, we will only be working with one database and we will have exclusive access to that database.
However, your PostgreSQL instance can support many databases and provide access to many users over the
network.

A database server is software that provides access to the databases maintained on a computer. The
database server handles networking and access control, so that only certain computers and users have
access to the databases.
A database cluster is a series of computers that collaboratively handle databases. Data is often
transferred between database servers within the database cluster using server-level replication. Coupled
with load balancers, database clusters are the brains behind many massive web applications today.

Think of it as a hierarchy, where elements of one level of the hierarchy contain all of the elements of the next
hierarchical level.

Clusters > Servers > Databases > Schemas > Tables > Records

In practice, your database server may reside on your desktop GIS workstation, and you may only have one
database on the server. For instance, you could have a database called "GIS" and keep your data grouped into
schemas, such as a "flood" schema containing tables which in turn store map features related to the National
Flood Hazard Layer. In that case, you'd have:

localhost Server > GIS database > flood schema > flood_zone table > flood zone record

Your desktop GIS knows how to retrieve, manipulate, and display the data within the records as GIS data, the
same way as it would work with a file-based data format. We will find by the end of the workshop that having
the database manage some of the work of processing and manipulating the spatial data, many opportunities for
more efficient workflows and quality control checks will become apparent.

It may seem like a lot, but all of this technology working in concert enables some amazing things:

Tens of thousands of simultaneous reads and writes.
Multiple users that can share information and remain compartmentalized.
ACID Compliance.

Atomicity: Transactions can be performed. Changes made during a transaction will only be stored in

6

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html
https://en.wikipedia.org/wiki/ACID

the database once the transaction is committed. Transactions can be rolled back to the previous state.
Consistency: Transactions must contain valid data. If not, the transaction is rolled back.
Isolation: Allows for multiple users/transactions to work in concert without impacting other's work
in unforeseen ways.
Durability: Once a transaction has been committed to the database, it will remain in that state until
another successful transaction alters it.

To begin harnessing the power of databases, we will need to learn how to speak their language. The language
used by most RDBMSs today is Structured Query Language, or SQL. It is a declarative programming
language, setting it apart from other languages, such as Python and Java.

You have likely used some SQL previously when working with
GIS. In ArcGIS, the Select By Attribute tool is very helpful in
selecting a subset of features using a set of user-defined
criteria.

You may not have noticed it, but the bottom text area in the
Select by Attribute window is labeled with:

SELECT * FROM table_name WHERE:

When using Select by Attributes, you are writing a SELECT
statement, the first type of SQL statement we will discuss.
Before we can begin speaking SQL, we will need to connect to
our database.

We will use both a desktop GIS and pgAdmin simultaneously,
so that you can see both the visual representation of the data in
QGIS or ArcGIS and the tabular, structural view of the data in
pgAdmin.

The first data we will review is from the Natural Earth dataset. Throughout this assignment, we will be using
the following data:

Admin 1 - States, Provinces
Populated Places
Urban Areas

Speaking SQL

Connecting to the Database

7

http://www.naturalearthdata.com/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-1-states-provinces/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-urban-area/

All of the Natural Earth data is at the 1:10m scale. Each dataset has been imported to the workshop
database and stored within the public schema.

To get started with pgAdmin, refer to the documentation on connecting to a database.

When you initially set up your database, you specified an administrator – typically the "postgres" account.
You can use that account for the remainder of the workshop, however you will likely need to set up other
users and roles if you are going to use this database in a multi-user, production environment.

If you need assistance with desktop GIS, the following links may be useful: - Connecting to PostgreSQL using
QGIS - Connecting to PostgreSQL using ArcGIS

SQL is a declarative language. You declare what data you would like to receive back from the database server.
You can make simple or very complex statements to the database server that will return what you need.

The most basic request for data follows this form: SELECT * FROM tablename; . FROM and SELECT are
called SQL clauses and they denote the types of data - whether within the database or provided by the user to
alter the query - used in the SQL statement. While FROM and SELECT are almost always present when
querying for data, the following clauses are available when constructing a SELECT statement.

SELECT
FROM
JOIN
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

These clauses, however, are executed in a specific order, as such:

1. FROM / JOIN
2. WHERE
3. GROUP BY
4. HAVING
5. SELECT
6. ORDER BY
7. LIMIT

First SQL statements

8

https://www.pgadmin.org/docs/pgadmin4/latest/connecting.html
https://www.postgresql.org/docs/current/client-authentication.html
https://www.postgresql.org/docs/10/user-manag.html
https://docs.qgis.org/3.22/en/docs/user_manual/managing_data_source/opening_data.html?highlight=postgis#database-related-tools
https://desktop.arcgis.com/en/arcmap/latest/manage-data/databases/connect-postgresql.htm

This order of operations is important to consider as we move forward; as your queries become more complex, it
will be difficult to troubleshoot queries that are invalid or inefficient. In many cases, violation of the order of
operations will lead to invalid SQL or queries that are incredibly slow.

Let's start by exploring the public.admin1 table that we've already viewed using GIS.

Remember, SQL statements take this basic form: SELECT * FROM tablename; , so let's make that request
in pgAdmin. Once you are connected to the database, click on the SQL Query button and enter the following:

SELECT	*	FROM	public.admin1;

In the lower half of the window, you will see all of the columns (the asterisk denotes all columns) and all of the
records (we did not limit what was returned with a WHERE statement) for the public.admin1 table.

Let's add a WHERE statement to limit the number of records returned. We will use the contents of a column to
limit the results to just those dealing with United States records.

Type the following into the SQL Query window and run the query. How many results are returned?

SELECT	*	FROM	public.admin1;

It would be easier to see what is returned if we limit the columns returned to just the relevant columns. Add the
sov_a3, geonunit columns to your SELECT query.

SELECT	sov_a3,	geonunit	FROM	public.admin1;

It would also be helpful to order the records by the contents of certain columns. Let's sort on the geonunit
column.

SELECT	sov_a3,	geonunit	
		FROM	public.admin1
	ORDER	BY	geonunit;

This can also be written as:

SELECT sov_a3, geonunit FROM public.admin1 ORDER BY 2; with the number representing the

Limiting the results

9

column to sort. Count from the left-most column, starting with 1.

There's still a large amount of columns returned and many duplicates. You can use the DISTINCT keyword
to tell the server that you want a unique set of records returned.

SELECT	DISTINCT	sov_a3,	geonunit	
		FROM	public.admin1
	ORDER	BY	1,	2;

Read through the returned records. What could you use to limit the results to just the US states? Now try the
following query. The addition of the name column will return the names of the second-level administrative
divisions.

SELECT	DISTINCT	sov_a3,	geonunit,	name	
		FROM	public.admin1	
	ORDER	BY	1,	2,	3;

From here, write a SQL statement that will return 51 rows (the United States plus the District of Columbia) with
only 1 column: name . It should look similar to this:

SELECT	name	
		FROM	public.admin	
	WHERE	[...]
	ORDER	BY	1;

Note that the columns used in the WHERE statement are not required to be included in the list of columns
returned.

Run the following query. It should only return one record, because New Jersey is one-of-a-kind.

SELECT	name,	shape	
		FROM	public.admin1	
	WHERE	name	=	'New	Jersey';

Taking a look at the shape column, you should see an unintelligible string of characters. This is a binary
representation (Well-known Binary) of the Geometry data stored in the shape column.

Using Functions to Alter Output

10

In our SELECT statements, we can use a variety of functions to alter the values in those columns as they are
returned by the database. Two functions, ST_AsEWKT() and ST_AsGeoJSON(), accept geometry data and
return text representations of the data. Try out the following two statements.

SELECT	name,	ST_AsEWKT(shape)
		FROM	public.admin1	
	WHERE	name	=	'New	Jersey';

SELECT	name,	ST_AsGeoJSON(shape)	
		FROM	public.admin1	
	WHERE	name	=	'New	Jersey';

Functions can also be nested, so that the results of one function can then be passed to the outer function in the
nested list. For example, we want New Jersey's shape in WKT format, but we want it projected into New Jersey
State Plane. Remember, functions can return data in different types and functions expect data of specific types,
so the order in which the functions are called is very important.

ST_Transform() is a PostGIS function that changes the projection of the Geometry in a column to a specified
projection. Projections are represented using Spatial Reference IDs (SRID). These IDs are stored, along with
the projection information, in the public.spatial_ref_sys table.

While you could look up the SRID for New Jersey State Plane, I'll save you the trouble and let you know that the
SRID is 3424.

The output of the ST_Transform() function is Geometry binary data, which we can then pass into any
function expecting Geometry data.

SELECT	name,	ST_AsEWKT(ST_Transform(shape,3424))	
		FROM	public.admin1	
	WHERE	name	=	'New	Jersey';

You will see that the coordinates and the SRID are different from before. If you're unsure of the difference in
coordinates, you can specify a column more than one time in a SELECT statement.

SELECT	name,	
				ST_AsEWKT(ST_Transform(shape,3424))	as	stateplane,
				ST_AsEWKT(shape)	as	latlng
		FROM	public.admin1	
	WHERE	name	=	'New	Jersey';

11

https://postgis.net/docs/manual-3.0/ST_AsEWKT.html
https://postgis.net/docs/manual-3.0/ST_AsGeoJSON.html
https://postgis.net/docs/manual-3.0/ST_Transform.html
http://spatialreference.org/ref/epsg/3424/

After each column name, you can specify a new column name. In the previous example, we changed the output
name of the two ST_AsEWKT() functions to stateplane for the one with an inner ST_Transform()
and latlng for the one in its native WGS84 coordinate system.

Another PostGIS function is ST_Centroid(). Given a line or polygon geometry, ST_Centroid() returns a
point representing the center of that object. Can you create a SELECT statement that returns the center point of
New Jersey in New Jersey State Plane?

Let's now explore how to make new tables based on the results from a SELECT statement. Using GIS, take a
look at the "places" data. You can see that the table has a large amount of columns, with populated places
outside of the US. To work on this data, you will want to make a copy of the table in your own schema.
However, when making the copy, you want to reduce the number of columns and select only the records that
relate to US cities and places.

In your Query Window, type in the following:

CREATE	SCHEMA	workspace;

This will create a new schema in which you can store tables, views, and other database objects. When the query
planner looks for database objects, it follows a search path, similar to the PATH variable in your operating
system. To include this new schema in the path, issue the following command to your database:

ALTER	DATABASE	workshop	SET	search_path	=	"$user",workspace,public;	

As an aside, the "$user" portion of the command above lets the database know that it should search a
schema that shares its name with the current user first. While this might not be applicable for this workshop, it
is good practice once you have multiple users in your database.

Going forward, to reference mytable table in your workshop schema, you will only need to refer to the
table as mytable instead of workshop.mytable . You should keep in mind that if you create a table in
your schema called admin1 , the database will refer to workspace.admin1 instead of
public.admin1 , because workspace is listed in the search path before public .

First, the simple task should be to select just the US places. Use a where statement to limit the records returned

Creating a New Schema

Creating a new table

12

https://postgis.net/docs/manual-3.0/ST_Centroid.html

to just those in the US.

We also want the following columns in our new table:

id - the Primary Key to the table. Primary Keys are unique values that the database can use to keep track
of records. Primary Keys are not required. Despite this, you should always have a primary key. Considering
we're making a new table as a subset of an existing table, we can use the same column as primary key in
the new table. Primary Keys can also be designated from multiple columns; this is called a Composite Key.
shape - we want to map these points in the future, so we want to bring them over to the new table.
name - name of the populated place.
adm1name - Admin Level 1 name. In this case, it's state name. Rename this column in your SELECT
statement to state.
pop_max, pop_min, pop_other - columns containing different population estimates.
max_areami - generous estimate of the size of the city/place in square miles. Rename this to areasqmi.
elevation - estimated elevation of the city/place in meters.
timezone - name of the time zone in which the city is located.

First, build your SELECT statement and confirm that it is valid. Run it to ensure you are happy with the results.
Double check that you have the proper columns included and that you've correctly renamed the columns in the
statement.

Once your SELECT statement is returning the desired data, it is very easy to make that a table within your own
schema. You can use the CREATE TABLE [tablename] AS SELECT... statement to put the results of
your SELECT into a table. It should look something like the following:

CREATE	TABLE	workspace.usplaces	AS	
		SELECT	[list	of	columns]	
		FROM	public.places
		WHERE	ISO_A2	=	'US';

We can also use aggregate functions to calculate statistics on records within a table.

Let's first create a SELECT query that counts the number of city/place points within each state. We will use the
count() function and the GROUP BY clause to count up the number of points within each unique value in

a column.

SELECT	state,	count(*)	
		FROM	workspace.usplaces	

Using Functions to Calculate New Values and Creating Views

13

https://www.postgresql.org/docs/current/functions-aggregate.html

	GROUP	BY	state	
	ORDER	BY	state;

How many points are in New Jersey? California? Alaska?

A count of points alone does not give us a good indication of population by state. Granted, we will be missing
most of the population of a state if we only add up the population of the cities represented in this data, but it
should give us a better reflection of population. We can use the SUM() function to sum up the population of
the places in each state.

SELECT	state,	count(*),	sum(pop_max)	
		FROM	workspace.usplaces	
	GROUP	BY	state	
	ORDER	BY	state;

What's the sum of the population column for New Jersey? Alaska? This is perhaps a better indication of
density, however it's still not perfect. What if we wanted the average value of the population in the place points
table? Can you create a SELECT that shows state name, average of the pop_max field, and count of points?
Once you get the SELECT query working, create a table view of the query. A table view is essentially a query
stored in the database that is presented to users as a table. There is no actual table, instead the view references
other existing table(s) when called.

The difference in syntax for creating a new table from a SELECT and a new view is simply:

CREATE	VIEW	workspace.placestats	AS	SELECT	[...];

PostGIS also has spatial aggregators, that can perform what would be considered a Dissolve in ArcGIS.
ST_Union() , when used with a GROUP BY clause , will union the spatial features within the

aggregation window and return a new set of spatial features.

Return to GIS and look at the admin1 features. Notice there is a "region" column in the admin1 table. Let's
make a view that will merge the geometries of the US states together on the fly.

First, we want to limit our set of output records to just the US. We'll again use iso_a2 = 'US' to limit our
set of records from approximately 4,000 polygons down to the 51 that make up the US States (and DC).

We'll also group on the contents of the region column. If you execute the following query, you'll see that
there are only four values in the region column for our subset of data.

SELECT	DISTINCT	region	FROM	public.admin1	WHERE	iso_a2	=	'US';

14

https://www.postgresql.org/docs/current/sql-createview.html

We should expect 4 records - and thus 4 multi-part polygons - returned from our SELECT query.

We will also need to provide our view with a unique ID number, so that GIS packages can use it as the primary
key. The public.admin1 table already has a primary key in the id column. However, we can't use the id in
our SELECT query as-is, because it will then need to be put into the GROUP BY clause. If we group by a unique
value, none of the output records will be merged. What we can do is take either the minimum or maximum of
the id column for that set of records that share the same value in the region column. The functions min()
and max() work with a GROUP BY clause and will return a unique value within the set. Then, when loaded
into QGIS or ArcGIS, the product of min() or max() can be used as the ObjectID/Primary Key.

Create your view like the following:

CREATE	OR	REPLACE	VIEW	workspace.usregions	AS	
	SELECT	min(id)	AS	objectid,	st_union(shape)	AS	shape,	admin1.region
			FROM	admin1
		WHERE	admin1.iso_a2	=	'US'
		GROUP	BY	admin1.region;

Confirm that your view works by viewing it in your desktop GIS. Note that it may take some time to draw
because the database is storing the individual states and their geometries as records in a table. The regions are
created dynamically upon retrieval. Later, we will explore materialized views, table-like objects that store
the view's definition and the data behind it.

Return to pgAdmin to review the public schema, as we will begin using some of the additional tables in the
schema. Let's first explore the public.us_state_info table, which has information about the 50 United
States and the District of Columbia. There are columns in this table that match those in the
public.admin1 table, so you will be able to join this additional information to the spatial table.

Open the SQL Editor, run the following and inspect the output rows.

SELECT	*	FROM	public.us_state_info;

The us_state_info table has 7 columns. Two of the columns, population and houseseats , are
integer values, while the rest are text values. While there are some variations (bigint versus integer, character
varying versus text) the types of columns are essentially text and integers. One column should stand out, as
there is a more appropriate column type for storing date and time values.

Exploring New Data

15

https://www.postgresql.org/docs/current/functions-datetime.html

Run the following statement, ordering the rows in the us_state_info table by date admitted to the Union.

SELECT	*	FROM	public.us_state_info	ORDER	BY	statehood;

What's wrong with the sort order?
Why do you think it is ordering the results in the way that it is?

You can use the CAST() function to dynamically change the type of the data. Rewrite the above statement,
but now order on CAST(statehood AS date) and see how the results differ. Luckily, PostgreSQL is good
at guessing how text should be interpreted as date or time values. You would experience problems, however, if
the date was represented in text as "04/06/12", because the SQL interpreter would not know if the date is:

MM/DD/YY: April 6, 2012 (or 1912)
DD/MM/YY: June 4, 2012 (or 1912)
YY/MM/DD: June 12, 2004 (or 1904)

When specifying dates, you should use a simple and unambiguous format for your dates. ISO 8601 outlines
standards for representing dates. Absent another well-defined date format already in use, you should always
use 8 digits to represent the date. This means that day 4 will be represented as "04". Secondly, you will specify a
date using the YYYY-MM-DD format. For example, this workshop falls on October 16, 2024 or, "2024-10-16".

Let's now select only the records for states admitted to the Union after 1875. Simply doing the following will not
work:

SELECT	*	FROM	public.us_state_info	WHERE	statehood	>	1875;

If you were to attempt this, you would receive the following back as an error:

ERROR:		operator	does	not	exist:	text	>	integer

The greater than and less than operators will work for numeric (integer and decimal) as well as for date and
time values. You must explicitly define both operands as date values in order for the comparison to work.

Try the following:

SELECT	*	FROM	public.us_state_info	

Working with Different Data Types

16

https://en.wikipedia.org/wiki/ISO_8601

WHERE	CAST(statehood	AS	date)	>	CAST('1875-12-31'	AS	date);

You need to put the date value in single quotes to first make it text, otherwise, the SQL interpreter might
attempt to subtract the month and day from the year and return an integer. Then you can use CAST to change
the text to a date type.

There's also a PostgreSQL-specific shortcut for the CAST function. You can write it like so:

value::type

The previous SQL statement could then be written like so:

SELECT	*	FROM	public.us_state_info
WHERE	statehood::date	>	'1875-12-31'::date;

Making sure the right types of values are used is incredibly important. The functions will often perform
specific tasks based on the input types and will return values of a type based in the input.

For example, try the following:

SELECT	1/4;

What value is returned? What is the type of the value returned? While we would naturally expect to receive a
decimal type when calculating 1/4, all the database knows is that you are working with two integer values and
thus you want an integer value returned. You will need to be explicit with your type values so that you receive
data back in the proper type.

Here's several ways you can have the database return the correct value of 0.25 for the calculation 1/4:

SELECT	CAST(1	as	numeric)/CAST(4	as	numeric);
SELECT	1::numeric/4::numeric;
SELECT	1.0/4.0;
SELECT	1/4.0;			--	just	the	denominator	works,	too.	

And you can always put in type modifiers (e.g. character varying (length) or
numeric(precision, scale)) so that the database returns exactly what you want. If you know that you

Know Your Types

17

will always receive decimal values between 0 and 1 and you only want two significant digits, then you can put a
modifier after the numeric type to return exactly that.

SELECT	(1.0/4.0)::numeric(3,2);
--	returns	0.25

--	But	you	need	to	be	mindful	of	the	types	inside	the	parentheses:
SELECT	(1/4)::numeric(3,2);
--	returns	0.00
--	calculates	1/4	using	integers,	then	formats	numeric
--	the	order	of	operations	counts	when	dealing	with	functions!

Finally, you can name the new column on output, just as you'd name or rename any other column.

For example, if you were to run the following SQL statement:

SELECT	state,	statehood::date	AS	admission
FROM	public.us_state_info;

You would cast the "statehood" column from text to date, then rename the column to "admission". This will
become important when we make new tables from the results of SELECT statements. SELECT has no problem
returning columns without names, however CREATE TABLE AS requires that every column in the SELECT
query has a name.

Let's work on bringing our us_states_info table into a new table that will incorporate a subset of the
admin1 data with the columns from us_states_info . You may want to revisit the admin1 table with

a SELECT * FROM public.admin1; to remind you of the numerous columns in that table.

Here's the columns we want to include in our final table:

From admin1 :

id (as our primary key)
shape
name
region
postal

Selecting from Multiple Tables

18

From us_state_info :

statehood (as a date type - and remember to name it 'statehood')
capital
largestcity
population
houseseats

While they will not be included in the final table, you will also need to use the following columns:

abbr in us_state_info - You will need this field to match up records in admin1, using the postal
column.
iso_a2 in admin1 - Without this, you will not have a proper match. You need to limit the rows from
admin1 to just those dealing with the United States. For example, try the following SQL statement to

see how many additional matches would occur when attempting to pair up the us_states_info
record for Minnesota with values from admin1 .

SELECT	iso_a2,	gn_name,	postal,	name
FROM	admin1	
WHERE	postal	=	'MN';

If you recall, INNER JOINs follow this structure:

SELECT	[columns]
FROM	[table	1]
JOIN	[table	2]	ON
[table	1].[column]	=	[table	2].[column];

Normally, when specifying columns from multiple tables, you include the table name and the column name.
For example, statehood column would be referred to as us_state_info.statehood . That would be
painful to write out each table name repeatedly, so you can use short aliases to refer to each table in an SQL
statement. These aliases can be as short as one character. For example, we will use "a" to refer to
public.admin1 and "i" to refer to public.us_state_info .

Here's a nearly complete SQL statement.

SELECT	a.id,	a.shape,	[rest	of	the	columns]
FROM	public.admin1	a

Writing our INNER JOIN

19

JOIN	public.us_state_info	i
ON	a.postal	=	i.abbr
WHERE	a.[...]	;

Using the list above, it's up to you to specify the remaining columns and add the correct WHERE statement.

Once you have added the missing components, run the SELECT statement to preview the results and then use
CREATE TABLE ... AS SELECT ... to make a new table in your schema with the 51 records for the US. Save the
new table in your schema as usstates , to go along with your usplaces table created in the last
assignment. Refer back to the previous assignment if you need a reminder on CREATE TABLE ... AS syntax.

You should also know that is a shorthand for declaring an INNER JOIN. Remember, an INNER JOIN is a
subset of the Cartesian Product of two tables, keeping only the records that have matching values in specific
columns. The following statements would produce the same results:

	SELECT	x.col1,	y.col2
	FROM	table1	x
	JOIN	table2	y
	ON	x.key	=	y.key;

	SELECT	x.col1,	y.col2
	FROM	table1	x,	table2	y
	WHERE	x.key	=	y.key;

It is recommended that you use the more explicit form of joining tables until you are very familiar with
performing these tasks. If you do happen to make a mistake, the SQL interpreter will give you more helpful
feedback when using the explicit form of JOIN.

One last bit of maintenance - we want to use the "id" column as our primary key. While it was the primary key
in the admin1 table, the primary key designation does not follow it over to the new table. You will need to
explicitly define the primary key for the table. You can do so through the ALTER TABLE statement.

	ALTER	TABLE	workspace.usstates	ADD	PRIMARY	KEY	(id);

Now, we have two tables in our personal schema: usplaces (points) and usstates (polygons). There
are several different ways to spatially relate features to one another. We'll explore Contains and Within to
perform some analyses.

Performing Spatial JOINs

20

https://www.postgresql.org/docs/current/sql-createtableas.html
https://www.postgresql.org/docs/current/sql-createtableas.html
https://www.postgresql.org/docs/current/sql-altertable.html

Your usplaces table should contain a "state" field. We will use both the "state" field and the "shape" field to
JOIN the usplaces and usstates tables together. We can also check to see if any of the values in the
usplaces.state column are incorrect - assuming that we are confident in the accuracy of each table's

spatial values.

A couple things to do first. Get the row count for both of your tables and write them down somewhere. Knowing
the count of rows on both tables will help you troubleshoot problems if you believe you are not receiving the
expected results.

Given that usstates should have 51 rows and usplaces should have 769 rows, if you JOIN the two together
without a limit or WHERE statement:

SELECTing from both tables without a WHERE or JOIN will produce 39,219 rows: the Cartesian
Product.
usstates LEFT JOIN usplaces [...] GROUP BY usstates.state should produce 51 rows

exactly.
A result of zero rows returned means that the specified columns in the JOIN do not contain any
matching values.
It's certainly possible that the number of rows returned does not match the above values. You should use
the row returned value as another check on your process. Ask yourself if the number of rows returned is
what you expect and why you think you might have received the number returned.

Let's perform a spatial join between the usstates and the usplaces to get a count of place points in
each state. First, how do we ultimately want to show this count? A choropleth map would work, so we will need
the state boundaries: usstates.shape and a count of points in each state: COUNT(usplaces.shape) .
A state name field would help, too.

SELECT	s.name,	s.shape,	COUNT(p.shape)	
FROM	usstates	s
JOIN	usplaces	p	ON	ST_Contains(s.shape,	p.shape)
GROUP	BY	s.name,	s.shape;

The test for the JOIN is if the statement evaluated after "ON" is true. In this case, ST_Contains() returns
True if s.shape contains p.shape . This is an example of a function that takes two geometry types and

Count of Places within each State

A thought exercise to check your work

Performing the Count

21

returns a boolean (true or false) type as a result.

Indexes are a crucial component when building your database. An index allows the query planner to focus its
search on certain sets of rows within a table. While we have been working on smaller datasets, we will naturally
work on more complex data as we continue our efforts. Also, recalling the Cartesian Product and how every
possible combination must be evaluated (or shortcut using an index scan) when performing a join, spatial
functions are much more computationally intensive than comparing two integers.

Revisit your previous query, but this time, add a special command to the beginning:

EXPLAIN	SELECT	s.name,	s.shape,	COUNT(p.shape)	
FROM	usstates	s
JOIN	usplaces	p	ON	ST_Contains(s.shape,	p.shape)
GROUP	BY	s.name,	s.shape;

EXPLAIN tells the Query Planner to return the steps it will take to return the desired result. Running the
command above should produce a result similar to the one included below.

GroupAggregate		(cost=14444.85..14450.47	rows=51	width=18224)
		->		Sort		(cost=14444.85..14446.13	rows=511	width=18224)
						Sort	Key:	s.name,	s.shape
					->		Nested	Loop		(cost=0.00..10435.36	rows=511	width=18224)
											Join	Filter:	((s.shape	&&	p.shape)	AND	_st_contains(s.shape,	p.shape))
											->		Seq	Scan	on	usplaces	p		(cost=0.00..21.69	rows=769	width=56)
											->		Materialize		(cost=0.00..20.77	rows=51	width=18168)
																	->		Seq	Scan	on	usstates	s		(cost=0.00..20.51	rows=51	width=18168)

While there is valuable information in the output of the EXPLAIN command, it can be overwhelming. As you
begin to troubleshoot your queries, looking for Seq Scan should be a top priority. A Sequential Scan of your
table is going to be very expensive, especially as you deal with larger tables and more expensive functions, such
as ST_Contains() .

We can reduce the time PostgreSQL needs to complete this query by building an index. Indexes can be thought
of as specialized lookup tables, where the Query Planner can find certain values quickly. Indexes can be built on
most data types, such as text strings, integers, dates, and spatial data.

Let's now build a GiST index on the shape spatial column in both tables.

Speeding Things Up

22

https://en.wikipedia.org/wiki/Boolean_data_type
https://www.postgresql.org/docs/current/gist-intro.html

CREATE	INDEX	ON	workspace.usstates	USING	gist(shape);

CREATE	INDEX	ON	workspace.usplaces	USING	gist(shape);

We can now re-run the EXPLAIN query and review the results. An example is included below; your results
may not exactly match.

GroupAggregate		(cost=4137.02..4142.64	rows=51	width=18224)
		->		Sort		(cost=4137.02..4138.30	rows=511	width=18224)
								Sort	Key:	s.name,	s.shape
								->		Nested	Loop		(cost=0.00..127.53	rows=511	width=18224)
														->		Seq	Scan	on	usstates	s		(cost=0.00..20.51	rows=51	width=18168)
														->		Index	Scan	using	usplaces_shape_idx	on	usplaces	p		
																								(cost=0.00..2.09	rows=1	width=56)
																				Index	Cond:	(s.shape	&&	shape)
																				Filter:	st_contains(s.shape,	shape)

While there is still a Sequential Scan on usstates , the Query Planner is now using an Index Scan on
usplaces_shape_idx , the index built on the usplaces table. The Query Planner decided that it should

still scan every record in usstates , probably because it is only 51 records. If we performed this same test
against places and admin1 , it might rely on both indexes.

Also take note of the "cost" figures in both Query Plan explanations. The cost is a unitless value that denotes the
relative cost of performing the steps of the query. The cost values are added up as you move up the hierarchy of
steps. In comparing the two plans, you can see that the Nested Loop step - there and below are the steps
necessary for our join - now has a greatly reduced cost.

Let's perform a quick check to see if there are any missing values in the usplaces.timezone field. How
can we quickly determine if there are any missing values in that field?

First, let's COUNT the number of NULLs in that field.

SELECT	COUNT(*)	FROM	usplaces	WHERE	timezone	IS	NULL;

Returns 77 records.

In the public schema, you will find a table called timezones . The timezones table contains the

Updating Time Zone Field

23

timezone boundaries, plus a column called tz_name that follows the same format of the
usplaces.timezone field. Additional reading if you're curious about the time zone database.

Let's SELECT all usplaces and bring in the tz_name field from public.timezones .

SELECT	p.shape,	p.name,	t.tz_name
FROM	usplaces	p
JOIN	public.timezones	t
ON	ST_Contains(t.shape,	p.shape);

You should see that there are 769 rows returned. To check for completeness, run the following:

SELECT	p.shape,	p.name,	t.tz_name
FROM	usplaces	p
JOIN	public.timezones	t
ON	ST_Contains(t.shape,	p.shape)
WHERE	t.tz_name	IS	NULL;

And you should receive zero rows back. That's a good thing! It means that we have a time zone (supplied by
public.timezones) for each record in usplaces . However, those values have not yet made it back into

the usplaces table. Run the first query in this section again and you will see that a count of 77 null records
will be returned.

We can UPDATE the usplaces table to replace all of the values in the usplaces.timezone column
with the appropriate values from the public.timezones table. Now, because you created your
usplaces table in your schema, you have the permission to update the table. Don't worry about making a

mistake, you don't have the permission to change the tables in the public schema, so in the absolute worst-
case scenario, you will need to DROP the tables in your schema and recreate them.

UPDATE statements take the following form:

UPDATE	[table	to	be	updated]
SET	[column]	=	[new	value]
FROM	[other	tables]	--	note:	this	line	optional
WHERE	[condition]

We will update the records in usplaces using the public.timezones table, like so:

UPDATE	usplaces	p
SET	timezone	=	t.tz_name

24

https://en.wikipedia.org/wiki/Tz_database
https://www.postgresql.org/docs/current/sql-update.html

FROM	public.timezones	t
WHERE	ST_Contains(t.shape,	p.shape)
AND	p.timezone	IS	NULL;

Our WHERE statement has two conditions. The first is that the timezones.shape value must contain the
usplaces.shape value. This defines our spatial relationship between the two tables. Like referenced

above, this is a shorthand way of defining an INNER JOIN. Second, we only want to update timezone values in
usplaces if they are currently NULL.

Run the above statement. Then, run the first statement in this section again. You should receive a count of 0
rows, as there are no longer any NULL values in the usplaces.timezone column.

While there are functions for testing spatial relationships, there are also functions for acting upon those
relationships to create new data. We can use two similarly named functions to produce a new GIS table that will
contain the spatial intersection of the Time Zones and the US States.

ST_Intersects(a.shape, b.shape) tests whether geometries in Table A intersect those in Table B. This
function returns a boolean type; TRUE if the geometries intersect, FALSE if they do not.
ST_Intersection(a.shape, b.shape) performs a spatial intersection on two input geometries. This function
returns a geometry type. If the two input geometries do not intersect, the function returns a NULL
geometry.

We will use both of these functions to perform the intersection of these two tables.

We will want the following columns from usstates :

name
region
postal

We will want the following columns from public.timezones :

zone
tz_name
utc_format

Finally, we will need to generate two new columns:
In place of a shape column from either table, we will use the ST_Intersection() function
within the list of columns, calling this newly generated column "shape". Essentially, we will feed the
two shape columns from both tables to ST_Intersection() and use the geometries returned

Creating a US-only Time Zone Map

25

https://postgis.net/docs/manual-3.4/reference.html#Spatial_Relationships
https://postgis.net/docs/manual-3.4/reference.html#Geometry_Processing
https://postgis.net/docs/manual-3.4/ST_Intersects.html
https://postgis.net/docs/manual-3.4/ST_Intersection.html

from the function as the new table's "shape" column.
We cannot use either table's primary key as the primary key for the new table, as there will be
duplicates. For example, Indiana is split by two timezones. If we use IDs from usstates , there
will be at least two duplicate values for each state divided by a timezone. We cannot use the
timezones IDs, because each timezone intersects several geometries in usstates , leading to

even more duplicates.

To solve this issue, we need to create a new id for the new table. PostgreSQL has sequences, specialized
counters for dealing with this type of issue. We can make a new temporary sequence to populate the id column
of our new table. We will use a temporary sequence because we will only use it for this one operation. Marking
it as temporary saves you the step of explicitly deleting it later using DROP SEQUENCE. It will be removed
automatically when you disconnect from the database.

Let's first perform a dry run by using just a SELECT. Once we're happy with the output of the SELECT
statement, we will create the sequence, update the SELECT and use it in conjunction with CREATE TABLE ...
AS.

SELECT	0	AS	id,	--	placeholder	for	the	sequence
		ST_Intersection(s.shape,	tz.shape)	as	shape,
		s.name,	s.region,	s.postal,
		tz.zone,	tz.tz_name,	tz.utc_format
FROM	usstates	s,	public.timezones	tz
WHERE	ST_Intersects(s.shape,	tz.shape);

When you run the above, you should receive 80 rows. Inspecting the rows, you'll see that there are some
duplicate state names. This is okay, because some states split between timezones will have a record for the
portion of the state in one zone and another record for the portion in the different zone.

Let's now make this an actual table.

--	creates	the	sequence
CREATE	TEMPORARY	SEQUENCE	newid	START	WITH	1;

--	creates	the	new	table
CREATE	TABLE	ustimezones	AS
SELECT	nextval('newid')	AS	id,
		ST_Intersection(s.shape,	tz.shape)	as	shape,
		s.name,	s.region,	s.postal,
		tz.zone,	tz.tz_name,	tz.utc_format
FROM	usstates	s,	public.timezones	tz
WHERE	ST_Intersects(s.shape,	tz.shape);

26

https://www.postgresql.org/docs/current/sql-createsequence.html
https://www.postgresql.org/docs/current/sql-dropsequence.html

--	adds	the	id	column	as	the	primary	key
ALTER	TABLE	ustimezones	ADD	PRIMARY	KEY	(id);

To confirm that you successfully performed the intersection, you can now run:

SELECT	*	FROM	ustimezones;

And see that you have a new table, with 80 rows and an ID field with unique values. Congratulations!

Most modern DBMS systems support a Materialized View, where the materialized view is defined like your
would a conventional table view, but the data is stored along with the view definition. Materialized views can
provide you with the benefits of a view, allowing you to reference multiple tables or functions and the
performance benefits of single-table access to the data. Indexes can be created on a materialized view in the
same manner as a database table. The downsides of a materialized view are that they take up additional space
and required additional planning with regard to refreshing the data.

Upon creating a Materialized View, the data referenced in the CREATE MATERIALIZED VIEW DDL will be
queried and stored. Unlike a regular view, changes to the underlying data will not automatically appear when
querying your materialized view. You will need to issue REFRESH MATERIALIZED VIEW in order to update
the data within the materialized view. If a refresh is started with the "concurrently" flag (e.g.
REFRESH MATERIALIZED VIEW CONCURRENTLY) then the materialized view will be able to be referenced

through other queries and views while the refresh is underway. In order to be able to refresh concurrently, the
materialized view must have a unique index defined.

When considering using a materialized view, you will need to assess a variety of needs and potential pitfalls.
You may need to reduce the time a complicated query needs to run. Alternatively, you might want to snapshot
your data, so that you are only analyzing records from before midnight today. In these cases, you will likely use
a view for creating the analysis or structure of the data, then creating your materialized view as
CREATE MATERIALIZED VIEW mv_data AS SELECT * FROM v_data_source; . You may also need

to create a view that wraps the materialized view, so that your users access the view only, freeing you to make
changes to the materialized view (potentially swapping it out) without your clients knowing.

CREATE	MATERIALIZED	VIEW	mv_data_2023	AS	SELECT	...	;
CREATE	VIEW	v_last_year_data	AS	SELECT	*	FROM	mv_data_2023;

CREATE	MATERIALIZED	VIEW	mv_data_2024	AS	SELECT	...

Materialized Views

27

CREATE	OR	REPLACE	VIEW	v_last_year_data	AS	SELECT	*	FROM	mv_data_2024;

While a simplified example, you will often find that as you build your database and start to weave a web of
interdependencies, it will become harder to unravel as you have more users accessing more views and other
objects.

NOTE: Foreign Data Wrappers rely on several external dependencies. It may be difficult to get the necessary
libraries working reliably on Windows. The Windows Server instance on Amazon Web Services is properly
configured if you encounter difficulty in installing the libraries on your own Windows-based computer.

Many modern DBMS systems allow for the server to access data stored outside of its databases, presenting the
data as database tables. PostgreSQL offers this feature as Foreign Data Wrappers (FDW) allowing you to
reference a variety of external data sources. You can make an FDW that references a table in a remote
PostgreSQL database, or MSSQL, Oracle, Access and many other database-like sources. Alternatively, there are
FDWs that allow you to reference web-based resources, like an ArcGIS Server or an API endpoint serving up
GeoJSON.

We will create a Foreign Data Wrapper around the USGS Earthquakes API so that as earthquakes are observed
and provided over the USGS API, they will appear within a table as records with geospatial coordinates.

To set up a Foreign Data Wrapper, you will need to create two new types of objects: a Foreign Server and a
Foreign Table. The CREATE SERVER statement denotes that you will be using a Foreign Data Wrapper,
specifically the ogr_fdw wrapper that is included with PostGIS. Documentation on the ogr_fdw extension:
https://pgxn.org/dist/ogr_fdw/

CREATE	EXTENSION	ogr_fdw;	--	enable	the	extension.

CREATE	SERVER	usgs
		FOREIGN	DATA	WRAPPER	ogr_fdw
		OPTIONS	(
				datasource	'https://earthquake.usgs.gov/fdsnws/event/1/query.geojson?
				minmagnitude=2.5&orderby=time',
				format	'GeoJSON');

You will also write a CREATE FOREIGN TABLE statement that defines the fields in the data returned.

CREATE	FOREIGN	TABLE	earthquakes	(

Foreign Data Wrappers

28

https://earthquake.usgs.gov/
https://pgxn.org/dist/ogr_fdw/
https://pgxn.org/dist/ogr_fdw/

				fid	bigint,
				geom	Geometry(PointZ,4979),
				id	varchar,
				mag	double	precision,
				place	varchar,
				time	bigint,
				updated	bigint,
				tz	varchar,
				url	varchar,
				detail	varchar,
				felt	integer,
				cdi	double	precision,
				mmi	double	precision,
				alert	varchar,
				status	varchar,
				tsunami	integer,
				sig	integer,
				net	varchar,
				code	varchar,
				ids	varchar,
				sources	varchar,
				types	varchar,
				nst	integer,
				dmin	double	precision,
				rms	double	precision,
				gap	double	precision,
				magtype	varchar,
				type	varchar,
				title	varchar
)	SERVER	usgs
OPTIONS	(layer	'OGRGeoJSON');
--	"OGRGeoJSON"	is	the	default	name	provided	to	a	layer	loaded	using	the	GeoJSON	OGR	driver.

After your foreign table is created, try a basic select statement to review the results.

SELECT	*	FROM	public.earthquakes;

You could also open the database in QGIS (or ArcGIS, if available to you) and compare the data in the
earthquakes table with the USGS Earthquakes web page: https://earthquake.usgs.gov/.

You may notice that this table does take longer than your other tables to query. That is because it is retrieving
the data from the public API every time you query the foreign table. To improve the performance, you could
create a materialized view on the foreign table in order to maintain a local - but static - copy of the data.

29

https://earthquake.usgs.gov/
https://earthquake.usgs.gov/

CREATE	MATERIALIZED	VIEW	mv_earthquakes	AS
SELECT	*	FROM	public.earthquakes;

CREATE	INDEX	sidx_mv_earthquakes	ON	mv_earthquakes	USING	gist(geom);

When querying your new mv_earthquakes materialized view, you should see that the performance has
greatly increased. This is at the expense of having new data at query-time. You will need to update the
materialized view through REFRESH MATERIALIZED VIEW mv_earthquakes; on a frequency that suits
your needs.

The USGS Earthquake example uses GeoJSON, but the OGR FDW extension can access other sources, if your
underlying GDAL/OGR libraries were compile to support them. Here are a two examples using different
sources provided by different services.

The National Weather Service provides current weather alerts as well as several other weather products
through their OGC Web Services page: https://www.weather.gov/gis/cloudgiswebservices. Under "WFS/WCS"
you can find the endpoint that will provide vector data related to the current warnings. The link to the WFS
service is included in the CREATE SERVER statement below.

CREATE	SERVER	nws_weather
		FOREIGN	DATA	WRAPPER	ogr_fdw
		OPTIONS	(
				datasource	'WFS:https://mapservices.weather.noaa.gov/eventdriven/services/WWA/
				watch_warn_adv/MapServer/WFSServer?request=GetCapabilities&service=WFS',
				format	'WFS');

CREATE	FOREIGN	TABLE	warnings	(
				fid	bigint,
				shape	Geometry(MultiSurface,3857),
				gml_id	varchar,
				objectid	integer,
				message_id	varchar(254),
				hazard_abbreviation	varchar(2),
				alert_type	varchar(1),
				forecast_office	varchar(4),
				event	varchar(4),
				issuance	varchar(25),
				expiration	varchar(25),
				onset	varchar(25),
				ends	varchar(25),
				url	varchar(254),
				message_type	varchar(3),

30

https://www.weather.gov/gis/cloudgiswebservices
https://www.weather.gov/gis/cloudgiswebservices

				hazard_type	varchar(40),
				gis_file_date	timestamp,
				gis_ingest_date	timestamp
)	SERVER	nws_weather
OPTIONS	(layer	'watch_warn_adv:CurrentWarnings');

ArcGIS Server REST endpoints can also be queried through the OGR FDW extension. It may take some URL
mangling to get the appropriate link to use in the CREATE SERVER statement. An easy workflow would be to
locate the "Query" link on an ArcGIS Server endpoint, set the outFields to only the fields you want to
include (or * to return all fields) and set the where clause for the query as well, as some may require it.
You can simply use 1=1 as the where predicate to retrieve all records if it is required.

CREATE	SERVER	njogis_muni
		FOREIGN	DATA	WRAPPER	ogr_fdw
		OPTIONS	(
				datasource	'ESRIJSON:https://services2.arcgis.com/XVOqAjTOJ5P6ngMu/ArcGIS/rest/services/
				NJ_Municipal_Boundaries_3424/FeatureServer/0/query?where=1%3D1&returnGeometry=true
				&outFields=*&f=pjson',
				format	'ESRIJSON'
);

CREATE	FOREIGN	TABLE	fdw_njmunis	(
		OBJECTID	INT,	
		MUN	CHARACTER	VARYING	(28),
		COUNTY	CHARACTER	VARYING	(10),
		MUN_LABEL	CHARACTER	VARYING	(35),
		MUN_TYPE	CHARACTER	VARYING	(12),
		NAME	CHARACTER	VARYING	(40),
		GNIS_NAME	CHARACTER	VARYING	(35),
		GNIS	CHARACTER	VARYING	(8),
		SSN	CHARACTER	VARYING	(4),
		MUN_CODE	CHARACTER	VARYING	(4),
		CENSUS2020	CHARACTER	VARYING	(10),
		ACRES	DECIMAL,
		SQ_MILES	DECIMAL,
		POP2020	INT,	
		POP2010	INT,	
		POP2000	INT,	
		POP1990	INT,	
		POP1980	INT,	
		POPDEN2020	INT,	
		POPDEN2010	INT,	
		POPDEN2000	INT,	

31

		POPDEN1990	INT,	
		POPDEN1980	INT,	
		Shape__Area	DECIMAL,
		Shape__Length	DECIMAL,
		Shape	Geometry(MultiPolygon,3424)
)	SERVER	njogis_muni
OPTIONS	(layer	'ESRIJSON')
;

Alternatively, you can use the IMPORT FOREIGN SCHEMA functionality to bring in all of the available tables
from a foreign server. While helpful, it will attempt to create table names based off of the layers in the remote
service. GeoJSON and ESRIJSON servers will only have one table, named as such.

If you are not entirely sure of the data within the remote service and would like a quick import, you should
make a new schema in which you will import the tables. This way you can review the results and if there are
tables you would like to preserve, you can inspect their properties and manually revise the SQL to create the
foreign table. A generic example:

CREATE	SERVER	remote_gis_service
		FOREIGN	DATA	WRAPPER	ogr_fdw
		OPTIONS	(
				datasource	'...'
);

CREATE	SCHEMA	import_gis;

IMPORT	FOREIGN	SCHEMA	ogr_all	--	special	keyword	to	import	all
FROM	SERVER	remote_gis_service	INTO	import_gis;

Try exploring some additional GIS servers for data you could bring into PostgreSQL.

In the next section, we will be using the New Jersey specific data. Before you move on, confirm that you have
been able to create a usstates table in your schema, that you have updated your usplaces table to
remove the NULLs from the timezone field and that you have created a ustimezones table.

I strongly suggest you reach out for assistance if the previous steps have not been clear.

Additional Assignments

New Jersey Reports

32

Using the SQL concepts you learned above, create tables or views to answer the following questions.

How many fire stations are there in each NJ municipality?

Produce a table called fire_station_count that contains 564 rows and the following columns:

Municipal Code (unique 4 character string: for example Atlantic City is '0102')
County Name
Municipality Name
Count of Fire Stations within each Municipality

For extra credit: include the municipality's geometry in the new table. Make a basic choropleth map of the
number of fire stations in each municipality using QGIS or ArcGIS.

NJ Transit is exploring how changes to its bus service will affect municipalities. To begin this analysis, the
research team has asked you to assemble a few basic reports.

Create a table called camden_routes that is a simple list of Route Numbers that pass through Camden City.

You will need to make a Spatial Join between nj_muni and nj_busroutes using
ST_Intersects() . You will also need to use WHERE to limit the municipalities to just Camden City. You

only need to select the public.nj_busroutes.line column to get a list of routes. Also, the list should be
ordered and unique (using the DISTINCT keyword).

Create another table called route410_munis that is a simple list of municipality names where the Route
410 bus passes through the municipality.

You will again make a Spatial Join between nj_muni and nj_busroutes using ST_Intersects() .
You will need to use a WHERE to limit the bus routes to just those where LINE = 410 . The table should
have two columns, "county" and "mun" from the nj_muni table and the rows should be ordered by
county name, then municipality name.

The Pinelands boundary encompasses a very large area in South Jersey. The boundary, in many cases, cuts
through a municipality instead of following the municipal boundaries.

Make two tables that contain county and municipal names. The first table, called pinelands_munis will

Count of Fire Stations within Municipality

Municipalities Along Bus Routes

Municipalities Within the Pinelands

33

contain the county and municipal names for every municipality that intersects the nj_pinelands
boundary. The second table, called pinelands_within , will have the same schema as
pinelands_munis (county and municipal name), but will only contain records for the municipalities that

are completely contained by the nj_pinelands boundary.

Let's return to the Natural Earth data and see how we can incorporate that into our New Jersey data. There is
the urban_areas data that denotes areas of significant urban development. Let's compare it to the New
Jersey municipalities data to see how many NJ municipalities intersect or completely fall within the urban
areas.

There is one major catch - the Natural Earth data is in WGS84 and the New Jersey data is in New Jersey State
Plane. We can confirm that using the following queries:

SELECT	DISTINCT	ST_SRID(shape)	
		FROM	nj_muni;

SELECT	DISTINCT	ST_SRID(shape)	
		FROM	urban_areas;

The ST_SRID() returns the Spatial Reference ID, a numerical value that represents the coordinate system
of the geometry in the shape column. The DISTINCT clause de-duplicates the result set, that way we only see
one numerical value instead of a long list of the same value, as ST_SRID() is executed on each value in the
shape column.

You will see that the values are different. WGS84 is represented as 4326 while New Jersey State Plane is 3424.
More information about these Spatial Reference IDs can be found at http://spatialreference.org/.

PostGIS provides you with a function to transform a geometry to a different coordinate system.
ST_Transform() takes two arguments, a geometry and an integer SRID, and it returns the passed

geometry in the new projection.

Write a query that returns a list of municipality names and their counties that are completely contained by the
urban areas. Then, write a query that returns the municipalities that are completely outside of the urban area.

Here are a few hints:

Consider the types of JOINs you can use. You might want to consider an INNER JOIN for the "contains"
query, but that will not work for a query where you want the records that do not spatially intersect.

Urban Municipalities

34

http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/3424/
http://spatialreference.org/
https://postgis.net/docs/manual-3.0/ST_Transform.html

ST_Transform() can be used in the JOIN ... ON clause, nested within ST_Contains() ,
ST_Intersects() , or any other function that expects a geometry.

Either ST_Transform(nj_muni.shape, 4326) or
ST_Transform(urban_areas.shape, 3424) could work, but you might need to experiment with

either (but not both!) to get your query to work.

In the airports data from Natural Earth, there is only one airport located in New Jersey. You could quickly
confirm the airport by writing a query using airports and nj_muni . How can we write a query that
returns a list of airports within a certain distance (10 miles or 52,800 feet) from New Jersey?

One way to write such a query is to use the ST_Buffer() function, then use the resulting buffers to see if
any of the records in airports intersect or are contained by the buffers from New Jersey. ST_Buffer()
accepts two arguments, a geometry and a distance to create the buffer, in the same linear coordinates as the
input geometry's coordinate system. For New Jersey State Plane, the second argument to ST_Buffer()
would be in US Feet.

You might be inclined to write a query like this:

SELECT	a.name,	a.iata_code
		FROM	airports	a
		JOIN	nj_muni	n	
				ON	ST_Intersects(a.shape,	
								ST_Transform(ST_Buffer(n.shape,	5280*10),4326)
)

While the above is perfectly valid, it is very inefficient. If you request the query plan with EXPLAIN , you will
see that it is performing a sequential scan on both data sets, performing a very expensive function (buffer and
transform) on each row of nj_muni , over every row in the airports table. This query will take a very
long time to complete and you may want to consider the how to reduce the number of items in the Cartesian
Product of nj_muni and airports .

First, we're evaluating if something is near New Jersey by comparing it to the 564 municipalities that make up
the state. We should evaluate the overall outline of the state, not the individual municipalities, some of which
are not near the state border.

We could also create a new table to store our "nj_buffered" data, that represents New Jersey thus:

All 564 municipalities merged into one polygon.
Buffered the specified distance

Airports within a Distance from New Jersey

35

https://postgis.net/docs/manual-3.0/ST_Buffer.html

Transformed to 4326, WGS84

However, we might not want to keep a table on disk with this information. We might also be on a system where
we do not have the privileges to create our own tables. How could we "trick" the query planner into performing
the expensive tasks only once?

A Common Table Expression, also known as a "WITH" clause, allows us to effectively create a temporary table
for the purpose of completing a query. The temporary table or tables created in a WITH clause only exist within
the scope of the query. Each temporary table in the WITH clause can be referenced in the main query in the
same way any regular table or view can be referenced.

Here's a shell of a query that you can use to write your optimized query to locate airports within 10 miles of
New Jersey:

WITH	nj_buffered	AS	(
		SELECT	[functions	to	process	NJ	municipalities]	as	SHAPE
				FROM	nj_muni
)
SELECT	a.name,	a.iata_code
		FROM	airports				a
		JOIN	nj_buffered	n	ON	[spatial	join	type]

WITH clauses are very important to understand when optimizing your queries in PostgreSQL. Most database
systems have a method for the operator to override how the query planner will plan the execution of a query.
Oracle has "hints" - special comments embedded in the query that tell the Query Planner to use a different
method to bring the data together. Previously, PostgreSQL used the WITH clause to act as an optimization
fence. Starting in version 12, the Query Planner may rewrite the CTE to be an inline subquery if it will perform
better. CTEs can still be materialized, as well as allow for recursive queries.

If a precalculation step is needed in other contexts outside of a single query, you can consider making the
CTE/WITH clause portion its own materialized view. This allows for precalculation of values and performance
increases can be realized through applying indexes to the materialized view.

In an earlier step, we used ST_Transform() to reproject the records in a table to a different coordinate
system. You could use a materialized view to create a view that performs the projection on a base table and
then stores the results on disk, for easier retrieval. As the only difference between the two "tables" is the
reprojected geometry data, a materialized view makes sense as any updates on the base table will be present in
the reprojected data after running REFRESH MATERIALIZED VIEW .

Airports and Weather Alerts

36

https://www.postgresql.org/docs/current/queries-with.html

Earlier in the section on foreign data, we explored the National Weather Service API that returns active weather
advisories. Can you create a list of US airports that are currently experiencing a weather advisory (if any)?

You may need to make a view that can employ ST_Transform() to reproject the geometry data received, so
that you can join it with the airports data. You may also want to make that same view the source to a
materialized view to improve performance.

Hopefully, this workshop has achieved its goals in explaining how databases can be further integrated into your
GIS workflow. There still remains much to learn; with any available time, we can discuss and walk through the
following:

Importing Data in to PostgreSQL/PostGIS
Exporting Data to Different Formats
Differences Between PostGIS and ArcGIS Enterprise Databases
Data Warehousing
More uses of Materialized Views
Triggers and functions for Quality Control

Directly manipulating spatial data using SQL can provide for many new opportunities for streamlining your
work. Queries to load, extract, analyze, and process data can be run on a schedule or be integrated into other
workflows. Getting the most out of the technologies in your toolbox will enable you to do far more than you may
have previously thought.

Next Steps

Closing

37

